极化SAR/高光谱图像分类
Li ZC, Li HC*, Gao G, Hua ZX,
Zhang F
, Hong W, “Unsupervised classification of polarimetric SAR images via SVGp0MM with extended variational
inference”,
ISPRS Journal of Photogrammetry and Remote Sensing
, 2023. (
Top
)
Hu W, Wang F, Yin Q*,
Zhang F
, “SGT: A Generalized Processing Model for 1-D Remote Sensing Signal Classification”,
IEEE Geoscience and Remote Sensing Letters
, 2022.
Cheng J, Xiang D, Yin Q, Zhang F*, “A Novel Crop Classification Method Based on the Tensor-GCN for
Time-Series PolSAR Data”
IEEE Transactions on Geoscience and Remote Sensing
, 2022. (
Top
)
Ni J, Carlos LM*, Hu Z,
Zhang F
, “Multitemporal SAR and Polarimetric SAR Optimization and Classification: Reinterpreting Temporal
Coherence”
IEEE Transactions on Geoscience and Remote Sensing
, 2022. (
Top
)
Deng S, Yin Q,*
Zhang F
, Yuan X, “A Ship Ghost Interference Removal Method Based on Gaofen-3 Polarimetric SAR Data”,
IGARSS2022
, 2022.
张帆
, 闫敏超, 倪军, 项德良, “高阶条件随机场引导的多分支极化 SAR 图像分类”, 中国图象图形学报, 2023.
Yin Q, Li J, Zhou Y, Xiang D, Zhang F, “Adaptive weighted learning for vegetation contribution in soil
moisture inversion using PolSAR data”,
International Journal of Remote Sensing
, 2022.
Ni J, Xiang D, Lin Z, Carlos LM, Hu W,
Zhang F*
, “DNN-based PolSAR image classification on noisy labels”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2022.
Zhou Y, Chen P, Liu N, Yin Q,
Zhang F
, “Graph-Embedding Balanced Transfer Subspace Learning for Hyperspectral Cross-Scene Classification”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.
Zhang F, Cao Z, Xiang D, Hu C, Ma F, Yin Q, Zhou Y, “
Pseudo quad-pol simulation from compact polarimetric SAR data via a complex-valued dual-branch
convolutional neural network”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021.
Ni J,
Zhang F*
, Yin Q, et al. Random neighbor pixel-block-based deep recurrent learning for polarimetric SAR image
classification[J].
Transactions on Geoscience and Remote Sensing
, 2021, 59(9):7557-7569. (
Top
)
Cheng J,
Zhang F
, Xiang D, et al. PolSAR Image Classification With Multiscale Superpixel-Based Graph Convolutional
Network[J].
Transactions on Geoscience and Remote Sensing
, 2021. (
Top
)
Zhang F
, Yan M, Hu C, et al. Integrating Coordinate Features in CNN-Based Remote Sensing Imagery
Classification[J].
IEEE Geoscience and Remote Sensing Letters
, 2021.
Yin Q, Xu J, Xiang D, Zhou Y,
Zhang F
. Polarimetric Decomposition With an Urban Area Descriptor for Compact Polarimetric SAR Data[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2021.
Yin Q, Li J, Ma F, Xiang D,
Zhang F
. Dual-Channel Convolutional Neural Network for Bare Surface Soil Moisture Inversion Based on Polarimetric
Scattering Models[J].
Remote Sensing
, 2021, 13(22): 4503. (
Top
)
Cheng J,
Zhang F
, Xiang D, et al. PolSAR Image Land Cover Classification Based on Hierarchical Capsule Network[J].
Remote Sensing
, 2021, 13(16): 3132. (
Top
)
Ni J,
Zhang F
, Ma F, et al. Random Region Matting for the High-Resolution PolSAR Image Semantic Segmentation[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2021, 14: 3040-3051.
Wang Y, Cheng J, Zhou Y,
Zhang F
, Yin Q. A Multichannel Fusion Convolutional Neural Network Based on Scattering Mechanism for PolSAR Image
Classification[J].
IEEE Geoscience and Remote Sensing Letters
, 2021.
Yin Q, Wu Y,
Zhang F*
, et al. GPU-based soil parameter parallel inversion for PolSAR data[J].
Remote Sensing
, 2020, 12(3): 415. (
Top
)
Li Z, Ni J,
Zhang F*
, et al. Multi-GPU implementation of nearest-regularized subspace classifier for hyperspectral image
classification[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2020, 13: 3534-3544.
Li H, Wang W, Ye S, Deng Y,
Zhang F
, Du Q. A mixture generative adversarial network with category multi-classifier for hyperspectral image
classification[J].
Remote Sensing Letters
, 2020, 11(11): 983-992.
Yin Q, Cheng J,
Zhang F
, et al. Interpretable POLSAR image classification based on adaptive-dimension feature space decision
tree[J].
IEEE Access
, 2020, 8: 173826-173837.
Yin Q, Hong W,
Zhang F*
, Eric P. Optimal combination of polarimetric features for vegetation classification in PolSAR image[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2019, 12(10): 3919-3931.
Ni J,
Zhang F*
, Yin Q, et al. Robust weighting nearest regularized subspace classifier for PolSAR imagery[J].
IEEE Signal Processing Letters
, 2019, 26(10): 1496-1500.
Zhang F
, Ni J, Yin Q, et al. Nearest-regularized subspace classification for PolSAR imagery using polarimetric
feature vector and spatial information[J].
Remote Sensing
, 2017, 9(11): 1114. (
Top
)
Pan L, Li H C, Deng Y J,
Zhang F
, et al. Hyperspectral dimensionality reduction by tensor sparse and low-rank graph-based discriminant
analysis[J].
Remote Sensing
, 2017, 9(5): 452. (
Top
)
Li W, Wu G,
Zhang F
, et al. Hyperspectral image classification using deep pixel-pair features[J].
IEEE Transactions on Geoscience and Remote Sensing
, 2016, 55(2): 844-853. (
Top
)
Li W, Du Q,
Zhang F
, et al. Hyperspectral image classification by fusing collaborative and sparse representations[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2016, 9(9): 4178-4187.
Hu W, Huang Y, Wei L,
Zhang F
, et al. Deep convolutional neural networks for hyperspectral image classification[J].
Journal of Sensors
, 2015, 2015.
Li W, Du Q,
Zhang F
, et al. Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery[J].
IEEE Geoscience and Remote Sensing Letters
, 2014, 12(2): 389-393.
Xiong M,
Zhang F
, Ran Q, et al. Representation-based classifications with Markov random field model for hyperspectral
urban
data[J].
Journal of Applied Remote Sensing
, 2014, 8(1): 085097.
Li Y, Yin Q, Wang Y, Lin Y,
Zhang F
, Hong W. Multi-aspect Polarimetric SAR Image Scattering Feature Information Coding and Classification
with
Machine Learning Approach[C]//EUSAR 2021; 13th European Conference on Synthetic Aperture Radar. VDE, 2021:
1-4.
Ni J, Jia Y, Yin Q, Zhou Y,
Zhang F
. Metric Learning Based Fine-Grained Classification for PolSAR Imagery[C]//IGARSS 2020-2020 IEEE
International
Geoscience and Remote Sensing Symposium. IEEE, 2020: 716-719.
Wu Y, Yin Q*,
Zhang F
. GPU-Based Soil Parameter Parallel Inversion for PolSAR Imagery[C]//2019 6th Asia-Pacific Conference on
Synthetic Aperture Radar (APSAR). IEEE, 2019: 1-5. (
Excellent Paper Award Second Prize
)
Zhang S, Yin Q, Ni J,
Zhang F
. PolSAR image classification with small sample learning based on CNN and CRF[C]//2019 6th Asia-Pacific
Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019: 1-5.
Yin Q, Hong W,
Zhang F
, et al. Analysis of polarimetric feature combination based on PolSAR image classification performance
with
machine learning approach[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.
IEEE, 2018: 8124-8127. (
Invited Talk
)
SAR/光学图像目标解译
Ma F, Sun X,
Zhang F
, Zhou Y, Li HC, “What Catch Your Attention in SAR images: Saliency Detection based on Soft-Superpixel
Lacunarity Cue”,
IEEE Transactions on Geoscience and Remote Sensing
, 2022. (
Top
)
Zhou Y, Yang K, Ma F*, Hu W,
Zhang F
, “Water-land Segmentation via Structure-Aware CNN-Transformer Network on Large-scale SAR data”,
IEEE Sensors Journal
, 2022.
Meng T,
Zhang F
, Ma F, “A Target-region-based SAR ATR Adversarial Deception Method”,
2022 7th International Conference on Signal and Image Processing
, 2022.
Wang D,
Zhang F
, Ma F, Hu W, Tang Y, Zhou Y, “A Benchmark Sentinel-1 SAR Dataset for Airport Detection”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2022.
Zhang F
, Meng T, Xiang D, Ma F, Sun X, Zhou Y, “Adversarial deception against SAR target recognition network”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2022.
张帆, 陆圣涛, 项德良, 袁新哲, “An improved superpixel-based CFAR method for high-resolution SAR image ship target
detection”,
雷达学报
, 2022.
Zhou Y, Zhang F, Ma F, Xiang D,
Zhang F
, “Small vessel detection based on adaptive dual-polarimetric feature fusion and sea–land segmentation in
SAR images”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2022.
Ma F, Xiang D, Yang K, Yin Q,
Zhang F
, “Weakly Supervised Deep Soft Clustering for Flood Identification in SAR Images”,
IEEE Geoscience and Remote Sensing Letters
, 2022.
Tang J, Xiang D,
Zhang F
, Ma F, Zhou Y, Li HC, “Incremental SAR automatic target recognition with error correction and high
plasticity”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2022.
Ma F,
Zhang F
, Xiang D, Yin Q, Zhou Y, “Fast task-specific region merging for SAR image segmentation”,
IEEE Transactions on Geoscience and Remote Sensing
, 2022. (
Top
)
Ma F,
Zhang F*
, Zhang W, et al. Fast SAR Image Segmentation With Deep Task-Specific Superpixel Sampling and Soft Graph
Convolution[J].
IEEE Transactions on Geoscience and Remote Sensing
, 2020. (
Top
)
Xiang D,
Zhang F
, Zhang W, et al. Fast pixel-superpixel region merging for SAR image segmentation[J].
IEEE Transactions on Geoscience and Remote Sensing
, 2020. (
Top
)
Zhang F
, Liu Y, Zhou Y, et al. A lossless lightweight CNN design for SAR target recognition[J].
Remote Sensing Letters
, 2020, 11(5): 485-494.
Liu Y, Zhou Y, Zhou Y, Ma L, Wang B,
Zhang F
. Accelerating SAR Image Registration Using Swarm-Intelligent GPU Parallelization[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2020, 13: 5694-5703.
Zhang F
, Fu Z, Zhou Y, et al. Multi-aspect SAR target recognition based on space-fixed and space-varying
scattering
feature joint learning[J].
Remote Sensing Letters
, 2019, 10(10): 998-1007.
Liu C, Li HC, Fu K,
Zhang F
, Datcu M, Emery WJ. Bayesian estimation of generalized gamma mixture model based on variational em
algorithm[J].
Pattern Recognition
, 2019, 87: 269-284. (
Top
)
Yue K, Yang L, Li R, Hu W,
Zhang F
, Li W. Treeunet: Adaptive tree cnns for subdecimeter aerial image segmentation[J].
ISPRS Journal of Photogrammetry and Remote Sensing
, 2019, 156:1-13. (
Top
)
Huang L, Li W, Chen C,
Zhang F
, et al. Multiple features learning for ship classification in optical imagery[J].
Multimedia Tools and Applications
, 2018, 77(11): 13363-13389.
Shi Q, Li W,
Zhang F
, et al. Deep CNN with multi-scale rotation invariance features for ship classification[J].
IEEE Access
, 2018, 6: 38656-38668.
Zhang F
, Wang Y, Ni J, et al. SAR target small sample recognition based on CNN cascaded features and AdaBoost
rotation
forest[J].
IEEE Geoscience and Remote Sensing Letters
, 2019, 17(6): 1008-1012.
Li R, Liu W, Yang L, Sun S, Hu W,
Zhang F
, et al. DeepUNet: a deep fully convolutional network for pixel-level sea-land segmentation[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2018, 11(11): 3954-3962.
Chen H,
Zhang F*
, Tang B, et al. Slim and efficient neural network design for resource-constrained SAR target
recognition[J].
Remote Sensing
, 2018, 10(10): 1618. (
Top
)
Zhang F
, Hu C, Yin Q, et al. Multi-aspect-aware bidirectional LSTM networks for synthetic aperture radar target
recognition[J].
IEEE Access
, 2017, 5: 26880-26891.
金啸宇, 尹嫱, 倪军, 周勇胜, 张帆, 洪文. 一种基于场景合成和锚点约束的SAR目标检测网络, 南京信息工程大学学报, 2020, 12(2):210-215.
王 璐, 张 帆*, 李 伟, 谢晓明, 胡 伟. 基于Gabor滤波器和局部纹理特征提取的SAR目标识别算法, 雷达学报, 2015, 4(6), 658-665. (
《雷达学报》高被引论文
)
Tang J,
Zhang F
, Ma F, et al. How SAR Image Denoise Affects the Performance of DCNN-Based Target Recognition
Method[C]//IGARSS
2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.
Zhang F, Zhou Y,
Zhang F
, et al. Small Vessel Detection Based on Adaptive Dual-Polarimetric Sar Feature Fusion and
Attention-Enhanced
Feature Pyramid Network[C]//IGARSS 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE,
2021.
Liu Y,
Zhang F
, Ma F, et al. Incremental Multitask SAR Target Recognition with Dominant Neuron Preservation[C]//IGARSS
2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020: 754-757.
Du W,
Zhang F
, Ma F, et al. Improving SAR Target Recognition with Multi-Task Learning[C]//IGARSS 2020-2020 IEEE
International
Geoscience and Remote Sensing Symposium. IEEE, 2020: 284-287. (
Oral
)
Huang H,
Zhang F
, Zhou Y, et al. High Resolution SAR image synthesis with hierarchical generative adversarial
networks[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019:
2782-2785
Tang J,
Zhang F
, Zhou Y, et al. A fast inference networks for SAR target few-shot learning based on improved siamese
networks[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019:
1212-1215.
Fu Z,
Zhang F
, Yin Q, et al. Small sample learning optimization for ResNet based SAR target recognition[C]//IGARSS
2018-2018
IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018: 2330-2333.
SAR仿真成像
Zhang F
, Zhao C, Han S, et al. GPU-Based Parallel Implementation of VLBI Correlator for Deep Space Exploration
System[J].
Remote Sensing
, 2021, 13(6): 1226. (
Top
)
Zhang F
, Yao X, Tang H, et al. Multiple mode SAR raw data simulation and parallel acceleration for Gaofen-3
mission[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2018, 11(6): 2115-2126.
Zhang F
, Hu C, Li W, et al. Accelerating time-domain SAR raw data simulation for large areas using multi-GPUs[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2014, 7(9): 3956-3966.
Li Z, Su D, Zhu H, Li W,
Zhang F*
, et al. A fast synthetic aperture radar raw data simulation using cloud computing[J].
Sensors
, 2017, 17(1): 113.
Zhang F
, Hu C, Li W, et al. A deep collaborative computing based SAR raw data simulation on multiple CPU/GPU
platform[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, 2016, 10(2): 387-399.
Zhang F
, Li G, Li W, et al. Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative
computing[J].
Sensors
, 2016, 16(4): 494.
Zhang F
, Hu C, Wu P C, et al. Accelerating aerial image simulation using improved CPU/GPU collaborative
computing[J].
Computers & Electrical Engineering
, 2015, 46: 176-189.
Zhang F
, Li X, Liu H, et al. Three-dimensional terrain model multiview quality assessment considering human
visual
system[J].
Journal of Applied Remote Sensing
, 2015, 9(1): 097290.
Zhang F
, Li G, Li W, et al. Multiband microwave imaging analysis of ionosphere and troposphere refraction for
spaceborne SAR[J].
International Journal of Antennas and Propagation
, 2014, 2014.
Liang W, Jia Z, Qiu X, Hong J, Zhang Q, Lei B,
Zhang F
, et al. Polarimetric calibration of the GaoFen-3 mission using active radar calibrators and the
applicable
conditions of system model for radar polarimeters[J].
Remote Sensing
, 2019, 11(2): 176. (
Top
)
胡辰, 张帆*, 李国君, 李伟, 崔忠马. 基于冗余计算约简的环扫SAR回波多GPU快速模拟[J]. 雷达学报, 2016, 5(4): 434-443.
汪丙南, 张帆, 向茂生. 基于混合域的 SAR 回波快速算法[J]. 电子与信息学报, 2011, 33(3): 690-695.
汪丙南, 张帆, 向茂生. 基线抖动对干涉 SAR 相位的影响[J]. 遥感学报, 2010 (6): 1171-1181.
张帆,汪丙南,向茂生. 基于SAR回波仿真的BAQ压缩性能研究[J]. 系统仿真技术, 2010, 01.
张帆, 洪文. 基于计算机图形学的 SAR 图像几何畸变仿真[J]. 系统仿真学报, 2009 (9): 2503-2508.
张帆, 白璐, 洪文, 等. 基于计算机图形学的干涉 SAR 成像几何仿真[J]. 系统仿真学报, 2009 (8): 2195-2200.
张帆, 林殷, 洪文. 基于网格计算的 SAR 回波分布式仿真[J]. 系统仿真学报, 2008, 20(12): 3165-3170.
Ma L, Zhu Y,
Zhang F
, et al. Spaceborne repeat-pass interferometric synthetic aperture radar experimental evaluation for the
GaoFen-3 satellite[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE,
2018:
2168-2171.
Zhang F
, Tang H, Yin Q, et al. Multiple mode SAR raw data simulation for GaoFen-3 mission evaluation[C]//2017
IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017: 2097-2100.
Yao X,
Zhang F
, Sun X, et al. Comparison of distributed GPU computing frameworks for SAR raw data simulation[C]//2017
IEEE
International Geoscience and Remote Sensing Symposium . IEEE, 2017: 5225-5228. (Oral)
Tang H, Li G,
Zhang F
, et al. A spaceborne SAR on-board processing simulator using mobile GPU[C]//2016 IEEE International
Geoscience
and Remote Sensing Symposium. IEEE, 2016: 1198-1201.
Yao X, Hu C,
Zhang F
, et al. Atomic-free optimization on GPU based SAR raw data simulation[C]//2016 IEEE International
Geoscience
and Remote Sensing Symposium (IGARSS). IEEE, 2016: 645-648.
Hu C,
Zhang F
, Ma L, et al. Efficient SAR raw data parallel simulation based on multicore vector extension[C]//2015
IEEE
International Geoscience and Remote Sensing Symposium. IEEE, 2015: 4719-4722.
Li G,
Zhang F
, Ma L, et al. Accelerating SAR imaging using vector extension on multi-core SIMD CPU[C]//2015 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2015: 537-540.
Li G,
Zhang F
, Liu H, et al. Effect of ionosphere refraction on spaceborne SAR imaging precision[C]//2013 IEEE
International
Geoscience and Remote Sensing Symposium-IGARSS. IEEE, 2013: 330-333.
Li H,
Zhang F
, Hu W. GPU rasterization based octree fast generation algorithm for terrain modeling[C]//2013 IEEE
International Geoscience and Remote Sensing Symposium-IGARSS. IEEE, 2013: 282-285. (
Oral
)
Zhang F
, Wang B, Xiang M. Accelerating InSAR raw data simulation on GPU using CUDA[C]//2010 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2010: 2932-2935.
Zhang F
, Wang B, Xiang M. Accelerating InSAR raw data simulation on GPU using CUDA[C]//2010 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2010: 2932-2935.
Wang B,
Zhang F
, Maosheng X. SAR raw signal simulation based on GPU parallel computation[C]//2009 IEEE International
Geoscience
and Remote Sensing Symposium. IEEE, 2009, 4: IV-617-IV-620.
Zhang F
, Hong W, Li D. SAR image simulation of man-made scenes based on computer graphics[C]//IGARSS 2008-2008
IEEE
International Geoscience and Remote Sensing Symposium. IEEE, 2008, 4: IV-1395-IV-1397.
Zhang F
, Honw W. Analysis of squint angle in point target assessment[C]//2006 CIE International Conference on
Radar.
IEEE, 2006: 1-4.
Zhang F
, Hu C, Yin Q, et al. A GPU based memory optimized parallel method for FFT implementation[J]. arXiv
preprint
arXiv:1707.07263, 2017.
计算机视觉
Zhang R, Yang S, Zhang Q, Xu L, He Y,
Zhang F
. Graph-based few-shot learning with transformed feature propagation and optimal class allocation[J].
Neurocomputing
, 2022, 470:247-256. (
Top
)
Zhao Q, Hu W, Huang Y,
Zhang F
. P-DIFF+: Improving learning classifier with noisy labels by Noisy Negative Learning loss[J].
Neural Networks
, 2021, 144:1-10.
Hu W, Huang Y,
Zhang F*
, et al. SeqFace: Learning discriminative features by using face sequences[J].
IET Image Processing
, 2021, 15(11):2548-2558.
Zhu H, Zhuang Z, Zhou J,
Zhang F
, et al. Segmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle
swarm
optimization[J].
Multimedia Tools and Applications
, 2017, 76(6): 8951-8968.
Zhu H,
Zhang F
, Zhou J, et al. Estimation of fisheye camera external parameter based on second‐order cone
programming[J].
IET Computer Vision
, 2016, 10(5): 415-424.
Zhu H, Sheng J,
Zhang F
, et al. Improved maximally stable extremal regions based method for the segmentation of ultrasonic liver
images[J].
Multimedia Tools and Applications
, 2016, 75(18): 10979-10997.
Hu W, Huang Y, Zhang F, et al. Ray tracing via GPU rasterization[J].
The Visual Computer
, 2014, 30(6): 697-706.
张帆, 李晓阳, 刘欢, 等. 基于分形维数的 DEM 聚类简化方法研究[J]. 系统仿真学报, 2016, 28(2): 261-267.
李晓阳, 祝海江, 胡伟, 等. 下视 SAR 数据 3 维表面重建[J]. 中国图象图形学报, 2016, 21(4): 456-463.
李晓阳, 张帆, 祝海江, 等. 基于曲率熵和高斯混合模型的 DEM 简化算法研究[J]. 北京化工大学学报: 自然科学版, 2015 (6): 103-108.
Hu W, Zhao Q, Huang Y,
Zhang F
.P-DIFF: Learning Classifier with Noisy Labels based on Probability Difference Distributions[C].
International
Conference on Pattern Recognition (ICPR), 2021, 144:1-10.
Hu W, Huang Y,
Zhang F
, et al. Noise-tolerant paradigm for training face recognition CNNs[C]//Proceedings of the IEEE/CVF
Conference
on Computer Vision and Pattern Recognition (CVPR), 2019: 11887-11896. (
CCF A
)
Lin Y, Zhang F, Hu W. A novel 3D visualization method of SAR data[C], IET International Radar Conference,
2013.
Hu W, Li W, Zhang F, et al. Real-time Decolorization using Dominant Colors[J]. arXiv preprint
arXiv:1404.2728,
2014.
专著
Radar Systems: Technology, Principles and Applications (Chapter 6), Nova Science Publishers, 2013.
(ISBN:978-1-62417-872-6)
专利
合成孔径雷达成像数据三维显示方法. ZL201310722014.X
基于深度协同的合成孔径雷达回波并行模拟方法. ZL201610500585.2
基于极化特征的自适应维度决策树分类方法. ZL201811489586.7